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Executive Summary 
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This report summarizes our efforts on modeling the evolving temperature and con- 

centration fields in the microgravity nucleation apparatus which is being fabricated and as- 

sembled at the NASA Goddard Space Flight Center. The report covers the period from 1 

June through 30 November, 1987 and addresses the following major issues pertaining to the 

operation of the current design of the nucleation cloud chamber: 

1. Time required to  establish a steady temperature distribution; 

2. Supersaturation ratios achievable during the 20-second microgravity periods avail- 
able on KC-135; and 

3. Power requirements for maintaining steady operating temperatures. 

We have adapted the preliminary model for diffusion between concentric hemispheres 

t o  the cylindrical geometry of the apparatus under construction, and extended it to include 

the effects of radiation and conduction through the containment walls. Computer programs 

have been developed to calculate first the temperature distribution and then the evolving 

concentration field using a finite difference formulation of the trainsient diffusion and radia- 

tion processes. 

The computational results summarized below assume the following: 

0 Cylindrical cloud chamber filled with Argon gas at 760 torr; 

0 Source of Magnesium vapors from the center of the top plate of the chamber at 
equilibrium vapor pressure corresponding to 1000K; 

0 Chamber bottom maintained as a constant temperature heat sink at 293K; 

0 Chamber side walls thermally insulated from the surroundings; and 

0 Criterion for steady temperature field: temperature changes at any grid point at 
a rate less than 0.05K/second. 

For the above conditions, we estimate that: 

1. It takes approximately 35 minutes to establish a steady temperature field; 

2. Magnesium vapors released into the Argon environment at the "steady" tempera- 
ture distribution will reach a maximum supersaturation ratio of approximately 
IO4 in the 20-second period at a distance of 1 5  cm from the source of vapors; 

3. Approximately 750W electrical power will be required to maintain "steady" 
operating temperatures within the chamber. 

e 
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1 Introduction 

a 

The National Aeronautics and Space Administration (NASA) is currently studying the 

formation and interaction of fine-grained refractory particulates, and is planning a series of 

experiments t o  be carried out in a microgravity environment. 

used to  determine under what conditions the vapors of refractory metals nucleate. 

Chemical Engineering Department of the University of Virginia has undertaken to  develop a 

mathematical model for this experiment, to assist in the apparatus design and construction 

phases, and to  analyze the data once the experiments have begun. 

mary of the work at the University of Virginia on the modeling phase of the project. 

These experiments will be 

The 

This report is a sum- 

Most of the research to  date has been devoted to establishing the expected tempera- 

ture and concentration fields in the cloud chamber of the experimental apparatus, a 

diagram of which is given in Figure 1. 

a 

a 

c 

a 
Figure 1: A Schematic of the Microgravity Nucleation Apparatus 

0 

The temperature distribution depends on the transport of energy by several different 

mechanisms, but in the particular design of Figure 1 it is expected to  be influenced 

primarily by conduction and radiation. 

of these two mechanisms as well as look at their individual effects. 

This report will address both the combined effects 

The location in the 

e 
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cloud chamber where nucleation and condensation condensation commence depends on the 

vapor supersaturation ratio. 

for one of the most likely temperature distributions. 

A plot of the logarithm of this supersaturation ratio is given 

After initial laboratory tests, the experiment is expected to  run aboard NASA’s 

KC-135 aircraft wherein microgravity conditions can be produced for periods of ap- 

proximately 20-30 seconds at a time. Since the power supplies in this aircraft are limited, 

the designer of the experiment needs to have an estimate of the amount of power required 

to  run the experiment. A rough estimate of the power needed to  maintain the experiment 

will also be given. 

running the thermal model at the expected nucleation conditions. 

These estimates of power requirements are based on the results from 

2 The Temperature Distribution 

The prediction of the temperature distribution in the experimental chamber is very 

important for a variety of reasons. 

ratio is highly dependent on the temperature and that changes in the temperature can 

greatly affect the supersaturation profile. 

known to determine whether seals or other temperature sensitive components may be ad- 

versely affected by the high temperatures during the experiment. 

the temperature distribution and the mechanisms by which thermal energy is transferred are 

helpful in predicting the amount of energy required to  maintain the experimental desired 

operating conditions. 

The most obvious of these is that the supersaturation 

Also, the temperature distribution must be 

Finally, a knowledge of 

In modeling the nucleation apparatus, several basic assumptions have been made about 

the chamber and its operation. 

sidered to  be isothermal and the temperatures of these two regions are usually taken to  be 

l O O O K  and 293K respectively. The cloud chamber walls are considered to  be adiabatic. 

Since the upper chamber will probably be insulated, this region is also considered to be 

adiabatic. 

sure of 760 torr and the diffusing metal is magnesium. 

the diffusing species can easily be changed in the model. 

First, the crucible heater and the bottom plate are con- 
. 

The cloud chamber is assumed to  be filled with pure, gaseous argon at a pres- 

Both the operating pressure and 

This report deals with the transport of thermal energy through three paths: 

0 Conduction from the crucible heater through the ambient gas (argon) in the 
cloud chamber; 
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0 Conduction from the crucible heater through the aluminum walls to  the bottom 
of the chamber; and 

0 Radiation within the cloud chamber. 

Methods of removing heat t o  maintain constant bottom temperatures and the effect of con- 

trolling the side wall temperature have not been studied as yet. 

ture research. 

These are topics for fu- 

3 Conduction through Aluminum Wall 

The crucible in the experimental apparatus will have to  be maintained at very high 

temperatures. 

that  supports the crucible and down the side walls of the chamber. 

would lead to  high temperatures along the plate and the wall, and could alter the tempera- 

ture distribution within the chamber significantly. Since aluminum has a much higher ther- 

mal conductivity than argon, the walls of the chamber may tend to  transfer thermal energy 

from the heater t o  the lower regions of the chamber. This conduction would not only in- 

crease the power losses but also tend t o  heat up regions in the lower part of the chamber. 

Cooler temperatures in the lower part are essential because they are necessary for high su- 

persaturation ratios. 

of the cloud chamber and the chamber walls. 

become deformed and fail to  seal the contents of the chamber. 

calculated steady state temperatures through the wall based on conduction alone. 

A significant amount of heat may be conducted through the aluminum plate 

Such a flow of heat 

Also, in the experimental chamber there is an O-ring between the top 

If the walls become too hot, the O-ring may 

Figures 2 and 3 show the 

Any heat conducted through the plate must flow through the O-ring, a seal between 

the plate and the walls of the chamber. 

much lower than that of aluminum, there should be a large temperature drop across the 0- 

ring at steady state. Figures 2 and 3 each show two curves--one which is based on the as- 

sumption of all-aluminum construction and one which accounts for the temperature drop 

across the O-ring. The O-ring was taken to  be 3/16 of an  inch (0.4763 cm) in diameter. 

Figures 2 and 3 show that there is indeed a large, approximately 660K, temperature drop 

across the O-ring. 

and would keep the temperatures lower along the wall. 

the plate and/or the walls seems to be a reasonable and rather easy way of reducing the 

power requirements. 

amount of power if there was no break. 

at the end of the plate near the O-ring would be extremely high, though, and would p r o b  

Since the thermal conductivity of the O-ring is 

Such a thermal break would greatly reduce the heat flux along the wall 

Putting some type of break along 

Aluminum is very conductive and the apparatus would require a large 

Figures 2 and 3 also show that the temperature 



5 

- 

- 

e 
l 
I 

With O-Ring  
\ 

\ 

\ 
\\ 

w 

1.2 

1 . l  

1 

n 
Y 

0'0 0.9 
- 

u1 

4- 5 :  
e :  
E t  
0 0  
QC 0.8 
(D 
I- 

0.7 

0.6 

C.5 

a 

a 

a 

Figure 2: Top Plate Temperatures--Conduction through Aluminum Plate 
Only 

ably be much higher than the thermal limits of the O-ring material. Even if the thermal 

break was not present, the temperatures in the top corner between the plate and the wall 

would still be very high. 

proximately 580K. 

ent of any other heat transfer mechanism. 

determining the actual wall temperatures. 

(which is very hot) and heat up the cooler regions in the bottom of the chamber. 

effects are discussed in the next section. 

With all-aluminum walls, the predicted corner temperature is ap- 

All of these calculations are based on wall conduction alone independ- 

Radiation will certainly play a large role in 

Radiation will tend to cool down the top plate 

These 

e 
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Figure 3: Wall Temperature Distribution 
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4 The Effect of Radiation within- the Cloud Chamber 

Heat transfer by radiation becomes very significant at high temperatures. Just as was 

pointed out for the wall conduction, radiation too can have a large effect on the tempera- 

ture distribution as well as on how much power is needed for heating and cooling. Ther- 

mal radiation is described by the following formula: 
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where q = net radiant heat flow 
E = emissivity 
u = 

F,-, = View Factor 
A = Area of the radiating source 

Stefan-Boltzman constant = 5.6723-8 W/m2-s 

T,, T, = ‘Absolute temperatures of the source and the 
target, respectively 

This equation permits the calculation of the net heat flow between two isothermal surfaces. 

It cannot be applied to  the the radiant exchange in our situation since the walls of the 

cloud chamber will not be isothermal during the experiment. 

port is approximated by breaking the region within the chamber into a number of zones of 

constant temperature, and requires the solution of the following equation: 

Therefore, the radiant trans- 

1 i fk=j  
0 otherwise 

dkj’ 

which relates the surface heating, Q, and the surface temperature, T, within an enclosure. 

In other words, the surface zones within the enclosure are either considered isothermal or 

adiabatic. 

T is the resulting steady state temperature of the adiabatic regions of the chamber wall. 

Figure 4 shows a diagram of the cloud chamber and the different zones. 

Therefore Q is the amount of energy needed to  keep a surface isothermal while 

Using Equation 2 with the six different zones gives a set of 4 simultaneous equations 

After determining the view fac- for the unknown temperatures which can easily be solved. 

tors for the configuration of the cloud chamber and its zones, the various zone tempera- 

tures and heat duties were estimated using different emissivities. 

presented in Table 1. 

These results are 

As shown in the table, radiation can have a great effect on the power requirements 

Also, it is apparent that  this effect can be reduced by lower emissivity of the hot source. 

For an c1 = 1.0, the heat duty is approximately 630 watts while it is only slightly more 

than 60 watts for an c1 = 0.1. The temperature of the walls do not seem to  be affected 

greatly by assuming different emissivities for these surfaces. Covering the top plate with a 

fine coating of low emissivity material, such as platinum for example, should greatly reduce 

the power losses due to radiation. Fortunately, the top plate is probably the only region 

where such a coating will be effective since the surfaces of other zones are expected to be 
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Figure 4: Zones used in Radiation Calculations 

covered with condensed particulates during the experiment. 

suggest that  reducing the emissivities of the walls and the bottom are unnecessary anyway. 

The results of this analysis 

* 

0 

e 5 The Conduction through the Ambient Gas (Argon) 

When the crucible heater is turned on and the temperature raised to lOOOK or higher, 

the ambient argon gas will conduct heat throughout the cloud chamber. 

temperature is extremely important since this temperature greatly affects the supersatura- 

tion ratio. 

conduction mechanism through argon. 

represents the temperature distribution a t  steady state. 

centrated near the heater and most of the chamber is still relaively cool. 

ture distribution would probably give very high supersauration ratios since most of the tem- 

perature drop is concentrated around the heater area. Therefore, as the metal vapors dif- 

fuse from the crucible they would quickly reach low temperatures which would cause high 

supersaturation ratios. 

The ambient gas 

Figure 5 is a plot of the temperature distribution resulting from just the heat 

This plot was made using numerical methods and 

In the plot, the bands are con- 

Such a tempera- 
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Table 1: Radi ti n Results for Different Emissivities 

All temperatures are in Kelvin 
All duties are in Watts 
Temperature of hot source T, 
Temperature of cold sink T6 = 293K 

= lOOOK 

e 

0 

0 

0 

0 

0.1 0.1 
0.1 0.5 
0.1 1.0 
0.2 0.1 
0.2 0.5 
0.2 1.0 
0.3 0.1 
0.3 0.5 
0.3 1.0 
0.4 0.1 
0.4 . 0.5 
0.4 1.0 
0.5 0.1 
0.5 0.5 
0.5 1.0 
0.6 0.1 
0.6 0.5 
0.6 1.0 
0.7 0.1 
0.7 0.5 
0.7 1.0 
0.8 0.1 
0.8 0.5 
0.8 1.0 
0.9 0.1 
0.9 0.5 
0.9 1.0 
1.0 0.1 
1.0 0.5 
1.0 1.0 

62.2 
63.4 
63.6 
122 
126 
127 
179 
189 
190 
233 
25 1 
253 
286 
312 
316 
336 
373 
378 
385 
433 
44 1 
43 1 
493 
503 
476 
552 
565 
519 
61 1 
627 

-57.9 
-63.9 
-64.7 
-112 
-126 
-128 
-165 
-188 
-192 
-215 
-250 
-255 
-263 
-310 
-318 
-309 
-371 
-380 
-353 
-43 1 
-443 
-395 
-490 
-505 
-436 
-549 
-567 
-476 
-607 
-629 

465 
344 
311 
538 
378 
326 
587 
404 
340 
625 
426 
351 
656 
445 
362 
682 
462 
376 
705 
477 
38 1 
724 
490 
389 
742 
502 
397 
758 
514 
404 

468 
352 
322 
542 
389 
344 
592 
418 
362 
630 
442 
378 
66 1 
462 
392 
688 
480 
404 
710 
496 
416 
730 
510 
426 
748 
523 
436 
764 
535 
445 

467 
35 1 
321 
54 1 
389 
343 
59 1 
418 
362 
629 
44 1 
378 
660 
462 
392 
686 
479 
404 
709 
495 
416 
729 
509 
427 
746 
523 
436 
762 
535 
446 

465 
345 
313 
538 
379 
329 
587 
406 
344 
625 
429 
356 
656 
448 
368 
682 
465 
378 
704 
480 
388 
724 
493 
397 
742 
506 
405 
758 
517 
413 
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6 The Combined Effect of Conduction and Radiation 

a 

e 

e 

a 

a 

0 

A program has also been developed which simulates the heating of the lower region of 

the experimental apparatus by the crucible heater. This program approximates the conduc- 

tion of heat through the argon gas and the containing aluminum wall using finite difference 

approximations t o  the solution of the equation of energy. 

accounted for by considering the zonal radiative flux over discrete time intervals. 

the program runs, i t  calculates the temperature of different points in a gridwork over a cer- 

tain time, 

calculate new temperatures. 

changing faster than a rate of 0.05K per second. 

tion from running the program with the following constraints: 

The effect of radiation is also 

When 

During the next interval, i t  uses the data  from the previous time interval to  

This process continues until no temperature in the gridwork is 

Figure 6 shows the temperature distribu- 

0 Zones 1 and 2 have emissivities of 0.1. Zones 3 through 6 have emissivities of 
0.3 (Refer to  Figure 4 for location of zones). 

0 The chamber walls (zones 3,4,5) are perfectly insulated from the outside environ- 
ment. 

0 The bottom (zone 6 )  is kept isothermal at 293K. 

0 The region where the heater is located (zone l ) ,  (the region between the center- 
line and 6 cm from the centerline), is kept isothermal at 1000K. 

Figure 7 is a similar plot except the 6 zones all have emissivities of 1. Of the two 

plots, Figure 6 should be closer t o  the expected temperature distribution since the emis- 

sivities have more realistic values. 

proximately to equal the value of a platinum coating, while the other zones reflect emis- 

sivities close to that of highly oxidized aluminum. The temperature distribution in Figure 

6 took approximately 35 minutes of simulation time, (which corresponds to 35 minutes of 

heating time), to reach our specification of steady state, i.e. less than 0.05K/s change in 

the temperatures at any grid point. 

culated for the distribution in Figure 7, it should be comparable. 

plots, one sees that the temperature distribution along the centerline is approximately the 

same for both situations. 

ratios for these two temperature distributions would be similar in this region as well. 

Also, since nucleation is expected to  occur first somewhere along the centerline, one would 

also expect that the point of highest supersaturation would be in the same general location 

even though the temperature distributions are definitely different. 

The emissivity of the top plate was chosen a p  

Although the time to  reach steady state was not cal- 

Comparing the two 

Therefore, one would expect that  the plots of the supersaturation 

Figure 6 (lower 
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emissivities) has much higher temperatures along the top plate of the chamber than those 

of Figure 7. 

heat through radiation as the model with the higher emissivities. In fact, the model with 

the higher emissivities actually has .a local minimum in the temperature which is probably 

due to a high radiative flux there. Therefore, the supersaturation plot based on the tem- 

perature distribution with the higher emissivities should also have a region of higher super- 

saturation ratios towards the corner of the chamber. 

The model with the lower emissivities does not have the same ability to lose 

Since the temperature of the bottom plate is forced to  remain at 293B, both tempera- 

ture plots are expected to look similar along the lower part of the wall. 

distributions vary greatly along the upper part of the wall, however. 

transferred through radiation is smaller than in Figure 7. Therefore, conduction plays a 

larger role and the temperatures are higher than in Figure 7. In Figure 7 there is a 

broad, relatively hot band along the upper wall since the view factor between the hot 

source and this zone is large and the emissivities are at their maximum values. 

the two plots should yield similar supersaturation plots except that the plot with lower 

emissivities should have the higher supersaturation ratios pushed closer to the centerline. 

The temperature 

In Figure 6, the heat 

Altogether, 

7 The Supersaturation Plots 

D 

Examples of the logarithm of the evolving supersaturation ratio for magnesium vapors 

corresponding to the two temperature plots are given in Figures 8 and 9. 

supersaturation plot based on the temperature distribution of Figure 5 ,  (conduction only 

through argon), is also given for comparison. The data for each of these plots were ob- 

tained from a program which simulates the transient diffusion of metal vapors within the 

nucleation chamber. 

emisssivities of the top plate are 0.1, (Figure 6), and Figure 9 is derived from the tempera- 

ture distribution where the emissivities of all the regions within the chamber are 1.0, 

(Figure 7). 

introduction of the vapors into the chamber. 

in the degree of supersaturation and the general shape of the supersaturation plots. Both 

plots have approximately the same maximum supersaturation ratio, and for both the point 

of highest supersaturation occurs about 14-15 cm down the centerline away from the heater. 

Figure 9, which is the plot based on the temperature distribution with all emisssivities 

equal to  1.0 also has a region of high supersaturation approximately 12 cm from the upper 

corner of the chamber. 

In addition, a 

Figure 8 is based on the temperature distribution where the 

Both of these plots are for a total elapsed time of 20 seconds from the first 

As expected, there are only small differences 

This local maximum in the supersaturation ratio occurs because 
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radiation causes this region to  be somewhat cooler and this increases the supersaturation 

ratio. 

of its logarithm at 5, 10, 15 and 20 seconds. 

plots based on these data. 

Table 2 in Appendix I shows the evolution of supersaturation by listing the values 

Appendix I1 gives additional supersaturation 

8 Power Requirements 

The power required to  maintain the desired thermal conditions in the cloud chamber 

can be estimated from the calculated temperature distributions. One way of calculating the 

amount of power needed is to assume that  the amount of energy supplied to  the apparatus 

is equal to the energy lost or removed. 

sidered to be adiabatic and the bottom plate is isothermal. 

considered to  be adiabatic, and therefore, once heated to steady state temperatures, there 

should be no heat losses from this part. 

therefore considered to occur through the bottom plate. 

In the mathematical model, the walls are con- 

The upper chamber is also 

All of the heat losses from the cloud chamber are 

An estimate of the total power needed to supply the heater can then be equated to 

the total power needed to maintain the bottom plate at 293K. Energy reaches the bottom 

plate by the three paths mentioned earlier--conduction through argon, conduction along the 

aluminum plate and wall, and radiation. 

timated values of each are: 

Using data from the temperature model, the es- 

Conduction through argon = 17 watts 
Conduction along wall = 7,654 watts 

329 watts Radiation - - 

which gives a total power requirement of approximately 8000 watts for the apparatus 

at steady state. 

timated heat losses along the wall are probably much higher than they should be because 

the mathematical model which gives the temperature distribution considers the wall to be a 

contiguous piece of aluminum. In reality, there is an O-ring between the crucible plate and 

the chamber side walls which should act as a "thermal break" between the high tempera- 

tures of the upper plate and the cool region near the bottom plate. 

thermal break was shown in Figures 2 and 3 with the steady state wall temperatures. 

calculations used to derive these temperatures were based on the assumption of wall con- 

duction only and did not consider the effect of radiation or loss of heat through argon. 

Nevertheless, the figures do show that there is a large temperature drop across the O-ring. 

This value is extremely high and would be unacceptable, if true. Es- 

The effect of this 

The 

0 
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Neglecting radiation and argon conduction, the heat flux along the wall is only 237 watts. 

Although the heat flux along the wall may not be this low, because the wall conduction 

and radiation are coupled, the wall conduction is expected to be closer to  this value than 

that of 7000 or 8000 watts mentioned above. 

duction of approximately 400 watts, the total power requirement should be approximately 

750 watts. 

wall with some type of a "thermal break.= 

Therefore, with an  estimated upper wall con- 

These calculations again emphasize the need to reduce the heat flow along the 

9 Summary 

A mathematical model based on finite difference methods has been developed which 

can simulate the transient temperature distribution in the microgravity nucleation cloud 

chamber now under construction at Goddard Space Flight Center. The program accounts 

not only for the conduction through the inert ambient gas (argon), but also for the effect 

of radiation within the enclosure, and the conduction along the aluminum side walls of the 

chamber. Once the temperature distribution has been established, the supersaturation ratios 

can be calculated from a somewhat similar program which models the transient diffusion of 

metal vapors. These programs can be used to predict evolving conditions within the cham- 

ber under different initial and boundary conditions. 

A temperature distribution for one of the more likely sets of experimental conditions 

has been given in this report. These conditions are: 

'a 
0 Diffusion of magnesium vapors through argon atmostphere at a pressure of 760 

torr from a hot source at lOOOK with the bottom plate at 293K and with in- 
sulated side walls. 

e 

a 

0 

I 

'0 

0 The emissivity of the top plate equal t o  0.1 and the emissivity of the walls and 
the bottom of the chamber equal t o  0.3. 

The temperature profile which corresponds to  these conditions is estimated to  take ap- 

proximately 35 minutes to develop. 

maximum of approximately lo4 in 20 seconds at approximately 15 cm from the source of 

vapors in the top plate. 

The supersaturation profile is expected to  reach a 

The steady state power requirements can be estimated from the temperature distribu- 

The losses by conduction through the argon atmosphere account for approximately tions. 

20 watts, and the losses due to  radiaton in the cloud chamber are approximately 330 
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watts. 

the bottom are more difficult to calculate. 

large, but this estimate assumed no thermal break between the heater plate and the cham- 

ber walls. 

through the chamber walls. 

The losses due to  conduction along the heater plate and along the chamber wall to 

One calculation shows these losses to be quite 

Such a break should greatly reduce the conductive heat flux from the heater 

10 Areas for Future Research 

The above results have pointed to  areas of further research. One of these areas 

would be the refinement of the program which calculates the temperature distribution 

within the cloud chamber. 

break(s) between the heater plate and the chamber walls. 

timate of heat losses through the chamber walls and, in turn, improve the power require- 

ment estimate. 

pected at different operating and boundary conditions. Although the program which cal- 

culates the transient diffusion of metal vapors does not seem to need any major improve- 

ments, it does need to be run to predict the behavior of other metals once the temperature 

distributions have been calculated. 

This program should be modified to account for the thermal 

This would yield a better es- 

This program can then be used to predict the temperature distributions ex- 

Improvements of the temperature distribution model are also needed for determining 

where to place thermocouples. 

If a thermocouple is placed in a region where the temperature gradients are steep, then a 

small error in its placement may lead to large errors in the estimate of the temperature 

distribution. 

say at the bottom or the sides, then the data may not be useful. 

must be made between these two. 

have undue influence on the nucleation of the metal vapors. 

predict where these positions are. 

modified, it should also be able to  provide a better estimate of the heating time required 

for the temperature distribution within the cloud chamber to reach steady state. 

The location of a thermocouple depends on various factors. 

If the thermocouple is placed in a region where the gradients are less steep, 

Therefore, a compromise 

Thermocouples should not be placed where they can 

The diffusion model can 

Also, after the temperature distribution program is 

Another major area of further research should be to establish the influence of cooling 

Supersaturation profile depends heavily on the tem- the cloud chamber walls and bottom. 

perature distribution. 

shape of the supersaturation profile and the degree of supersaturation. 

calculates the temperature distribution should be modified to accommodate cooling of the 

chamber walls, etc. 

Therefore, the method and intensity of cooling can affect both the 

The program which 
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a 

a 

will be co After the nucleation chamber is completed, experiment ducted in the 

laboratory at Goddard Space Flight Center. These experiments are expected to  be affected 

by convection which may interfere with the uniform nucleation of particles. By conducting 

the experiments on the KC-135 in a microgravity environment, these problems are expected 

to  be eliminated. Some calculations should be done to  estimate whether this is a valid as- 

sumption, though. 

temperature and velocity field within the chamber. 

without making some simplifying assumptions. 

answered is whether convection will occur or not. Therefore, if a total solution of the tem- 

perature and velocity field cannot be obtained, perhaps at least it can be estimated whether 

convective effects will be significant or not. 

Modeling convection would involve the simultaneous solution of the 

This would probably be very difficult 

Nevertheless, the main question to  be 

' 0  
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Table 1-1: Diffusion of Magnesium in Argon 

Temperature of Hot Source (K) = 1000 
Temperature of Cold Source (K) = 293 
Chamber Pressure (Torr) = 760 

0.1 
Emissivity of All 

0.3 Other Surfaces - 

- Emissivity of Upper Plate - 

- 

When plotting the results, a represenative "slice" of the chamber 
is broken up into elements and numerical values are assigned t o  these 
elements. The table below gives temperature and supersaturation 
data as a function of the element number. A figure identifying 
the location of the various elements is given at the end of this 
table. 

Log Supersaturation Ratio 
Element # Temp (K) 

~~ 

5 sec 10 sec 15 sec 20 sec 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

305.95080 
305.98307 
306.05009 
306.16003 
306.32388 
306.55571 
306.87265 
307.295 10 
307.84825 
308.56747 
309.50640 
310.72750 
3 12.30841 
314.35788 
330.40490 
330.48737 
330.65990 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.2897084 
0.1075653 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.6358048 
0.4603989 
0.1150047 

2.7542233 
2.6 199135 
2.3542047 
1.961961 7 
1.4492574 
0.8226483 
0.0888156 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.7867995 
2.6558736 
2.3961619 

e 



e 

0 

c 

0 

e 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
5.1 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61  
62 
63 
64 
65 
66 
67 
68 
69 
70 
71  
72 
73 
74 
75 
76 
77 
78 

330.94548 
331.37501 
331.98772 
332.83050 
333.95785 
335.43262 
337.33252 
339.81829 
343.041 8 1 
347.18695 
352.47281 
353.17344 
353.27747 
353.50048 
353.8791 1 
354.46337 
355.31567 
356.50903 
358.12655 
360.2625 1 
363.03000 
366.62812 
371.26097 
377.1897 1 
384.79395 
374.77734 
374.86495 
375.06484 
375.42909 
376.02897 
376.95124 
378.29422 
380.1661 3 
382.68729 
385.99909 
390.27816 
395.73975 
402.66767 
41 1.46317 
395.55358 
395.57245 
395.64989 
395.85795 
396.29542 
397.07862 
398.33343 

table 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
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1-1, continued 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1.1240950 
0.9568113 
0.6262952 
0.1385603 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1.6608901 
1.5029333 
1.1898548 
0.7257844 
0.1 15 14 19 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.1907978 
2.0435376 
1.7506503 
1.3144966 
0.7372467 
0.0207146 

0.0000000 0.0000000 0.0000000 

2.0108656 
1.5039894 
0.8797703 
0.1424609 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.9712858 
2.8454263 
2.5951019 
2.2222363 
1.7291736 
1.1 183228 
0.3921021 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.2181038 
3.0987432 
2.8607055 
2.5047791 
2.03 17892 
1.4424772 
0.7376354 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.4739349 
3.3626187 
3.1398819 
2.8053973 
2.3584138 
1.7979361 
1.1231 104 
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table 1-1, continued 

0 

a 

e 

0 

e 

a 

79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 

400.19030 
402.78342 
406.25440 
4 10.75927 
416.47902 
423.64531 
432.608 10 
415.88872 
4 15.76563 
415.58371 
415.44456 
415.48744 
4 15.8702 1 
416.75452 
4 18.29547 
420.63682 
423.91090 
428.24116 
433.74491 
440.53 140 
448.66797 

436.40309 
436.03172 
435.3944 1 
434.64074 
433.97505 
433.62001 
433.79061 
434.67654 
436.43414 
439.18512 
443.01832 
447.98880 
454.10567 
461.29053 
458.07423 
457.29255 
455.90455 
454.14203 
452.31948 
450.76663 
449.78305 
449.61100 
450.42657 
452.34266 

0.0000000 
0.0000000 
0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

455.4 1668 0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.8324890 
0.6258207 
0.2191118 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

1.6144031 
1.4285905 
1.0607745 
0.5159233 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.2419383 
2.0797883 
1.7565436 
1.2732222 
0.6268953 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.673 1040 
2.5382562 
2.2689015 
1.8656015 
1.3280540 
0.6554550 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

3.0699861 
2.9498092 
2.7083258 
2.344 1310 
1.8539727 
1.2338053 
0.4801 135 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.343 1190 
3.2406078 
3.0327837 
2.7160065 
2.2832773 
1.7262653 
1.0375054 
0.2122233 
0.0000000 
0.0000000 
0.0000000 

0.3336326 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.7005869 
3.5991439 
3.3952048 
3.0872252 
2.6726281 
2.1483775 
1.5117029 
0.7608104 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.8632785 
3.7740036 
3.5932196 
3.3179510 
2.9433157 
2.4636443 
1.8736860 
1.1697 192 
0.3502755 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.9272525 
3.8530842 
3.7010899 
3.4665801 
3.1416011 
2.7168621 
2.1836970 
1.5357373 
0.7698996 
0.0000000 
0.0000000 



e 

e 

0 

0 

0 

125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 

459.65674 
465.02255 
471.42084 
482.43506 
480.98516 
478.37978 
474.995 13 
471.33870 
467.92301 
465.18394 
463.44127 
462.89634 
463.64950 
465.7221 1 
469.07634 
473.63247 
479.28835 
511.89738 
509.35899 
504.77307 
498.76944 
492.20516 
485.91629 
480.55867 
476.55621 
474.12771 
473.33979 
474.15520 
476.46894 
480.13677 
485.00909 
550.25518 
545.95630 
538.13168 
527.83515 
516.58727 
505.832 16 
496.57950 
489.36485 
484.37639 
48 1.59017 
480.86 190 
481.97826 
484.68469 
488.70 180 
603.32295 
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table 1-1, continued 

0.0000000 
0.0000000 
0.0000000 
0.61 11 147 
0.2914280 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1.4142727 
1.15208 16 
0.6487699 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1.8254244 
1.62 13701 
1.2328053 
0.6598054 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1.7943066 

0.0000000 
0.0000000 
0.0000000 
2.6672997 
2.5326089 
2.2617842 
1.8517697 
1.2928388 
0.5728187 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.8391975 
2.7360968 
2.5273908 
2.2063917 
1.7545536 
1.1491606 
0.3709690 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.7101201 
2.6399909 
2.5021087 
2.2890291 
1.9702858 
1.5070636 
0.8667939 
0.0301124 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.2575507 

0.0000000 
0.0000000 
0.0000000 
3.451 7728 
3.3706851 
3.2040750 
2.9458748 
2.5841169 
2.1045000 
1.4940661 
0.7439609 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.3533356 
3.2974971 
3.1810129 
2.9958925 
2.7233905 
2.3403954 
1.8260077 
1.1658093 
0.3532543 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.0092739 
2.9794839 
2.9205470 
2.8256900 
2.6665828 
2.4059834 
2.0109660 
1.4595718 
0.7416535 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
2.4033551 

0.0000000 
0.0000000 
0.0000000 
3.8556934 
3.8002250 
3.6842 176 
3.5011034 
3.2387121 
2.8825299 
2.4189992 
1.8380687 
1.1344550 
0.3077909 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.6097452 
3.5 7652 19 
3.5048349 
3.3868382 
3.2044669 
2.9352515 
2.5583661 
2.0586312 
1.4279260 
0.6648988 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
3.1535560 
3.1429868 
3.1222688 
3.0856168 
3.0064438 
2.8491084 
2.5814864 
2.1813163 
1.6370792 
0.9465459 
0.1147598 
0.0000000 
0.0000000 
0.0000000 
2.47 12602 



a 

0 

a 

a 

a 

e 

171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 

596.32361 
583.28124 
565.82297 
546.83493 
529.03434 
513.98514 
502.24732 
493.82736 
488.48666 
485.89052 
485.66336 
487.39997 
490.66353 
679.24068 
668.75351 
647.96654 
618.42212 
586.15300 
557.06765 
533.45460 
5 15.46363 
502.5351 2 
493.97991 
489.14741 
487.43972 
488.27305 
491.02496 
786.65352 
774.06383 
745.15738 
694.85251 
638.36884 
591.20824 
555.31834 
529.01087 
5 10.35508 
497.8412 1 
490.34586 
486.99930 
487.04883 
489.69750 
925.53515 
918.67450 
897.29100 
81  1.37228 
705.78869 
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1.6373459 
1.3642177 
0.9749423 
0.4148071 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1.3437419 
1.1844802 
0.9913809 
0.7955660 
0.5052323 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.6515588 
0.3423918 
0.1013157 
0.0763060 
0.1079487 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0 .ooooooo 
0.0942 126 
0.0000000 
0.0000000 
0.0000000 

2.2087447 
2.1395876 
2.0524226 
1.8993556 
1.6136802 
1.1423328 
0.4555269 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1.5275394 
1.4487619 
1.4099590 
1.4549091 
1.5072970 
1.4424014 
1.1752982 
0.6649588 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.696 165 7 
0.4371737 
0.3016340 
0.4589689 
0.7720346 
0.9754203 
0.9457403 
0.6356066 
0.0334788 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0979963 
0.0000000 
0.0000000 
0.0000000 

0.0000000 0.0000000 

2.3871404 
2.3820824 
2.3936955 
2.3788230 
2.2744249 
2.0284697 
1.6092268 
1.0028368 
0.2087963 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1.5811332 
1.5261851 
1.5353861 
1.6587877 
1.8279059 
1.9221384 
1.8604067 
1.5999074 
1.1242352 
0.4332648 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.7082 12 1 
0.4634743 
0.3601953 
0.5770662 
0.9864412 
1.3299883 
1.4877227 
1.4116294 
1.086 1698 
0.5122948 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0989670 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

2.4703969 
2.4961283 
2.5561322 
2.6 102269 
2.5979829 
2.4689019 
2.1914061 
1.7504578 
1.1433771 
0.3764495 
0.0000000 
0.0000000 
0.0000000 
1.6052024 
1.56 12426 
1.5932011 
1.7548099 
1.9813349 
2.1572315 
2.2021182 
2.0742652 
1.7562754 
1.2458170 
0.5506942 
0.0000000 
0.0000000 
0.0000000 
0.7134417 
0.4750904 
0.3868607 
0.6325862 
1.0899833 
1.5050243 
1.7604480 
1.8091915 
1.6349284 
1.2364032 
0.6223202 
0.0000000 
0.0000000 
0.0000000 
0.0993802 
0 .ooooooo 
0.0000000 
0.0000000 
0.0000000 



0 

~a 
i 
I 

I 
l 

I 

a 

a 

217 
218 
219 
220 
221 
222 
223 
224 
225 

631.18135 
579.08433 
542.47045 
516.90058 
499.64694 
488.97617 
483.72763 
483.06184 
486.25889 
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0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.1798807 
0.4020219 
0.3040243 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.4606617 
0.8571998 
0.9818891 
0.8231719 
0.38 18 187 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.6007392 
1.0886516 
1.3327398 
1.3209180 
1.0518231 
0.5325126 
0.0000000 
0.0000000 
0.0000000 

Supersaturation 
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Figure 1-1: Element Location for Temperature and Supersaturation 
Plots 
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11. Transient Supersaturation Plots 

The following pages give the transient supersaturation plots for the diffusion of mag- 

These supersaturation plots are based on the 

The plots are given for 5,  10, and 15 seconds 

nesium in an argon atmosphere at ,760 torr. 

temperature distribution given in Figure 6. 

and a plot of the supersaturation profile at 20 seconds is given in Figure 8. 

e 
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